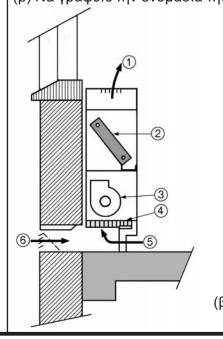

ΜΕΡΟΣΑ (40 ΜΟΝΑΔΕΣ) ΑΡ. ΤΑΥΤΟΤΗΤΑΣ: ΕΠΩΝΥΜΟ: ΟΔΗΓΙΕΣ: Να απαντήσετε σε όλες τις ερωτήσεις. Η κάθε σωστή απάντηση για τις ερωτήσεις 1 - 4 βαθμολογείται με 6 μονάδες ONOMA: και για τις ερωτήσεις 5 και 6 με 8 μονάδες. ΕΡΩΤΗΣΗ 1 ΕΡΩΤΗΣΗ 2 ΕΡΩΤΗΣΗ 3 Να κυκλώσετε τον αριθμό με τη σωστή τοποθέτηση της διαμέτρου. Να γράψετε στον πίνακα τον αριθμό που αντιστοιχεί στην ορθή όψη. Δίνεται πιο κάτω η χαρακτηριστική καμπύλη ενός κυκλοφορητή. Να υπογραμμίσετε τη σωστή απάντηση, από τις τρεις περιπτώσεις που μπορεί να ικανοποιηθεί από αυτό τον κυκλοφορητή. (α) Παροχή 1,5 m³/h και Μανομετρικό Ύψος 3 m ПЛАГІА КАТОШН ОШН ΠΡΟΣΟΨΗ (β) Παροχή 0,4 l/s και Μανομετρικό Ύψος 1,5 m (γ) Παροχή 40 I/min και Μανομετρικό Ύψος 2 m 4 6 8 10 12 14 QUS gpm 12 Q IMP gpm

ΕΡΩΤΗΣΗ 4

Να κυκλώσετε τον αριθμό με τη σωστή σχεδίαση της τομής Α - Α.

ΕΡΩΤΗΣΗ 5


Δίνονται στον πιο κάτω πίνακα, οι εικόνες τεσσάρων εξαρτημάτων που χρησιμοποιούνται στη σχεδίαση υδραυλικών, θερμικών και ψυκτικών εγκαταστάσεων. Να συμπληρώσετε στον πίνακα την ονομασία και τα σύμβολα τους.

ΟΝΟΜΑΣΙΑ	ΣΥΜΒΟΛΟ	ΕΙΚΟΝΕΣ

ΕΡΩΤΗΣΗ 6

Δίνεται στο πιο κάτω σχήμα μια τερματική μονάδα κλιματισμού.

- (α) Να συμπληρώσετε στον πίνακα την ονομασία των αριθμημένων μερών της μονάδας και
- (β) Να γράψετε την ονομασία της μονάδας

A/A	ΟΝΟΜΑΣΙΑ
1	
2	
3	
4	
5	
6	

Q m³/h 1,0 Q l/s 60 Q l/min

ΜΕΡΟΣ Β

ΕΡΩΤΗΣΗ 1 (40 ΜΟΝΑΔΕΣ)

Δίνεται η κάτοψη μιας κατοικίας σε κλίμακα 1:100.

- (α) Να συμπληρώσετε στον πίνακα 1, το μήκος των θερμαντικών σωμάτων, με τη βοήθεια του καταλόγου απόδοσης των θερμαντικών σωμάτων που δίνεται στον πίνακα 3
- (β) Να σχεδιάσετε με τη χρήση γεωμετρικών οργάνων στην κάτοψη, τα θερμαντικά σώματα στην κατάλληλη θέση (κλίμακα 1:100)
- (γ) Να σχεδιάσετε με τη χρήση γεωμετρικών οργάνων στην κάτοψη, το σύστημα κεντρικής θέρμανσης διπλής διασωλήνωσης
- (δ) Να υπολογίσετε και να συμπληρώσετε στον πίνακα 4, τη διάμετρο της διασωλήνωσης στο σημείο Α χρησιμοποιώντας τα στοιχεία από τους πίνακες 1 και 2
- (ε) Να υπολογίσετε και να συμπληρώσετε στον πίνακα 5, τη δυναμικότητα του λέβητα

ΕΠΩΝΥΜΟ:

ONOMA:

AP. TAYTOTHTAΣ:

Πίνακας 1

Αριθμός σώματος	Χώρος	Ύψος σώματος	Απόδοση kcαl/h	Θερμ. σώμα	Μήκος σώματος
1	Καθιστικό	600	2500	ΔΙΠΛΟ	
2	Τραπεζαρία	600	3000	ΔΙΠΛΟ	
3	Τραπεζαρία	600	2000	ΔΙΠΛΟ	
4	Κουζίνα 600 3000 ΔΙΙ		ΔΙΠΛΟ		
5	Κουζίνα	600	1750	ΔΙΠΛΟ	
6	Υπνοδωμάτιο 3	600	3500	ΔΙΠΛΟ	
7	Υπνοδωμάτιο 1	600	3700	ΔΙΠΛΟ	
8	Υπνοδωμάτιο 2	600	3450	ΔΙΠΛΟ	
9	Διάδρομος	600	1250	ΔΙΠΛΟ	
10	Μπάνιο	600	1000	ΔΙΠΛΟ	
11	Νιπτήρας	600	500	MONO	
12	Αποχωρητήριο	600	500	MONO	

(μονάδες 10)

(μονάδες 10)

(μονάδες 10)

(μονάδες 5)

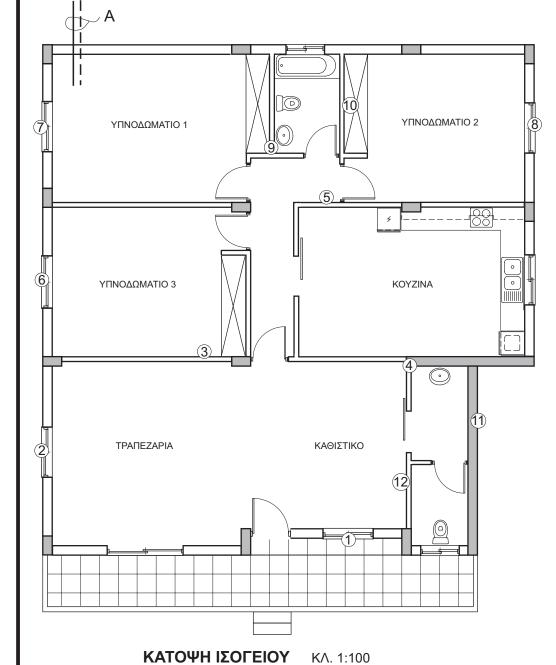
(μονάδες 5)

Πίνακας 4

Σημείο	Απόδοση σωμάτων kcal/h	Διάμετρος σωλήνων mm	
Α			

Πίνακας 5

Δυναμικότητα Λέβητα =


Πίνακας 2

Θερμικές απώλειες kcal/h	Διάμετρος σωλήνα σε mm
μέχρι 4 500	15
από 4 501 - 14 000	22
από 14 001 - 28 000	28
από 28 001 - 50 000	35

Πίνακας 3. Απόδοση θερμαντικών σωμάτων

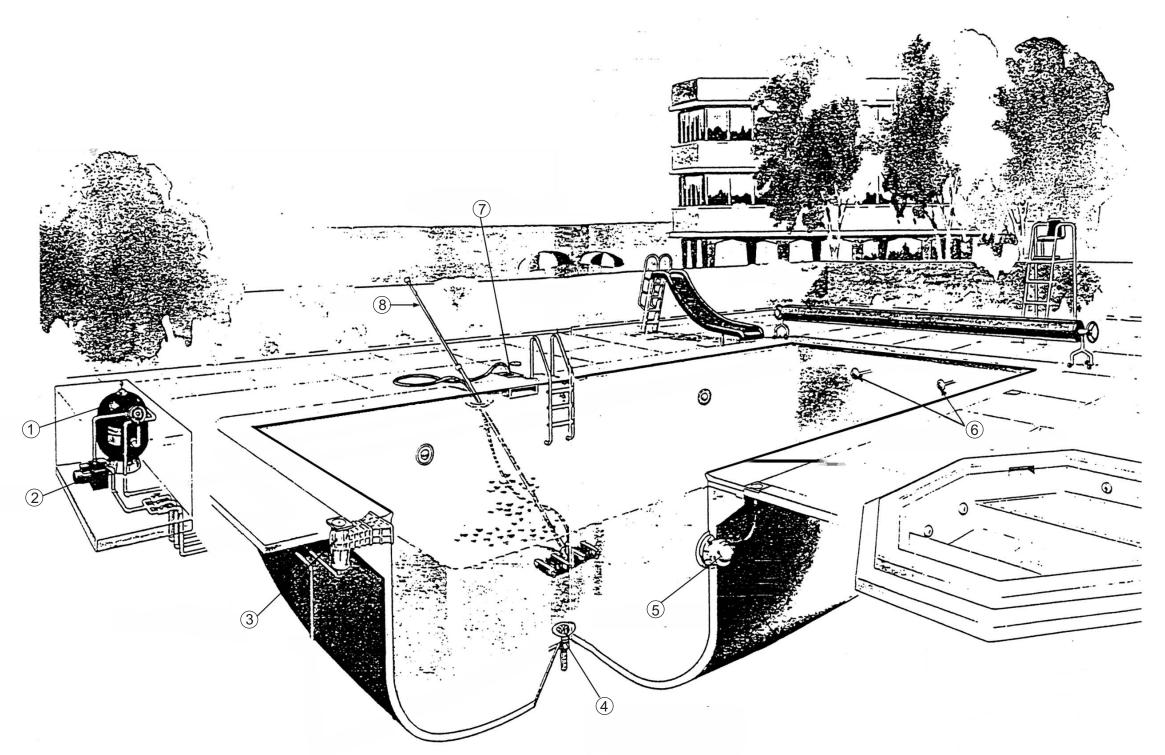
		MONA (EK)		ΔΙΠΛΑ (DK)			ΤΡΙΠΛΑ (3K)					
MHKOΣ (I) (mm)		ΥΨΟΣ (h) (mm)		ΥΨΟΣ (h) (mm)			ΥΨΟΣ (h) (mm)					
IVITINOZ	- (1) (111111)	500	600	800	300	500	600	800	300	500	600	800
240	kcal/h	215	248	318		420	500	622		621	718	890
360	kcal/h	322	372	477	417	631	750	932	607	932	1077	1336
480	kcal/h	429	496	636	556	841	1000	1243	809	1242	1436	1781
600	kca/h	536	620	795	695	1052	1250	1554	1012	1553	1795	2226
720	kcal/h	644	744	954	835	1262	1500	1865	1214	1863	2154	2671
840	kcal/h	751	869	1113	974	1472	1750	2176	1416	2174	2512	3116
960	kcal/h	858	993	1272	1113	1682	2000	2487	1619	2484	2871	3562
1080	kcal/h	966	1117	1431	1252	1893	2250	2797	1821	2795	3230	4007
1200	kcal/h	1073	1241	1590	1391	2103	2500	3108	2023	3106	3589	4452
1320	kcal/h	1180	1365	1749	1530	2313	2750	3419	2226	3416	3948	4897
1440	kcal/h	1287	1489	1907	1669	2524	3000	3729	2428	3727	4307	5342
1680	kcal/h	1502	1737	2226	1947	2945	3510	4351	2832	4348	5025	6233
1800	kcal/h	1609	1861	2385	2086	3155	3760	4662	3035	4658	5384	6678
2040	kcal/h	1824	2109	2703	2364	3576	4249	5283	3439	5280	6102	7568

ΧΩΡΟΣ ΓΙΑ ΠΡΟΧΕΙΡΕΣ ΠΡΑΞΕΙΣ

ΜΕΡΟΣ Β

EPΩTHΣH 2 (20 MONA Δ E Σ)

Στο πιο κάτω σχέδιο, φαίνεται μια κολυμβητική δεξαμενή (πισίνα) με τον εξοπλισμό της .


(α) Να σχεδιάσετε, με τη χρήση γεωμετρικών οργάνων, τη διασωλήνωση της κολυμβητικής δεξαμενής με διπλή γραμμή.

(μονάδες 12)

(β) Να συμπληρώσετε στον πίνακα, τα αριθμημένα μέρη της κολυμβητικής δεξαμενής.

(μονάδες 8)

A/A	ΟΝΟΜΑΣΙΑ
1	
2	
3	
4	
5	
6	
7	
8	